St. John’s Wort (Hypericum perforatum) – This herb is often used to treat mild to moderate depression. It is especially helpful to patients who do not respond well to SSRI medication (selective serotonin reuptake inhibitors). This herb can limit the effectiveness of some prescription medications, though, so double check with your doctor before taking it. A 2009 systematic review of 29 international studies suggested that St. John’s Wort may be better than a placebo (an inactive substance that appears identical to the study substance) and as effective as standard prescription antidepressants for major depression of mild to moderate severity.
Hypericum perforatum | |
---|---|
![]() |
|
Scientific classification | |
Kingdom: | Plantae |
(unranked): | Angiosperms |
(unranked): | Eudicots |
(unranked): | Rosids |
Order: | Malpighiales |
Family: | Hypericaceae |
Genus: | Hypericum |
Species: | H. perforatum |
Binomial name | |
Hypericum perforatum L. |
Hypericum perforatum, also known as St John’s wort, is a flowering plant species of the genus Hypericum and a medicinal herb that is sold over-the-counter as a treatment for depression.[1][2] Other names for it include Tipton’s weed, rosin rose, goatweed, chase-devil, or Klamath weed.[1] With qualifiers, St John’s wort is used to refer to any species of the genus Hypericum. Therefore, H. perforatum is sometimes called common St John’s wort or perforate St John’s wort to differentiate it. Hypericum is classified in the family Hypericaceae, having previously been classified as Guttiferae or Clusiaceae.[3][4] Approximately 370 species of the genus Hypericum exist worldwide with a native geographical distribution including temperate and subtropical regions of Europe, Turkey, Ukraine, Russia, Middle East, India, andChina.
Botanical description
Hypericum perforatum is a yellow-flowering, stoloniferous or sarmentose, perennial herb indigenous to Europe. It has been introduced to many temperate areas of the world and grows wild in many meadows. The herb’s common name comes from its traditional flowering and harvesting on St John‘s day, 24 June. The genus name Hypericum is derived from the Greek words hyper (above) and eikon (picture), in reference to the plant’s traditional use in warding off evil by hanging plants over a religious icon in the house during St John’s day. Thespecies name perforatum refers to the presence of small oil glands in the leaves that look like windows, which can be seen when they are held against the light.[1]
St John’s wort is a perennial plant with extensive, creeping rhizomes. Its stems are erect, branched in the upper section, and can grow to 1 m high. It has opposing, stalkless, narrow, oblong leaves that are 12 mm long or slightly larger. The leaves are yellow-green in color, with transparent dots throughout the tissue and occasionally with a few black dots on the lower surface.[1] Leaves exhibit obvious translucent dots when held up to the light, giving them a ‘perforated’ appearance, hence the plant’s Latin name.
Its flowers measure up to 2.5 cm across, have five petals, and are colored bright yellow with conspicuous black dots. The flowers appear in broad cymes at the ends of the upper branches, between late spring and early to mid summer. The sepals are pointed, with glandular dots in the tissue. There are many stamens, which are united at the base into three bundles. The pollen grains are ellipsoidal.[1]
When flower buds (not the flowers themselves) or seed pods are crushed, a reddish/purple liquid is produced.
Ecology
St John’s wort reproduces both vegetatively and sexually. It thrives in areas with either a winter- or summer-dominant rainfall pattern; however, distribution is restricted by temperatures too low for seed germination or seedling survival. Altitudes greater than 1500 m, rainfall less than 500 mm, and a daily mean January (in Southern hemisphere) temperature greater than 24 degrees C are considered limiting thresholds. Depending on environmental and climatic conditions, and rosette age, St John’s wort will alter growth form and habit to promote survival. Summer rains are particularly effective in allowing the plant to grow vegetatively, following defoliation by insects or grazing.
The seeds can persist for decades in the soil seed bank, germinating following disturbance.[5]
Invasive species
Although Hypericum perforatum is grown commercially in some regions of south east Europe, it is listed as a noxious weed in more than twenty countries and has introduced populations in South and North America, India, New Zealand, Australia, and South Africa.[5] In pastures, St John’s wort acts as both a toxic and invasive weed.[6] It replaces nativeplant communities and forage vegetation to the dominating extent of making productive land nonviable[citation needed] or becoming an invasive species in natural habitats andecosystems. Ingestion by livestock can cause photosensitization, central nervous system depression, spontaneous abortion, and can lead to death. Effective herbicides for control of Hypericum include 2,4-D, picloram, and glyphosate. In western North America three beetles Chrysolina quadrigemina, Chrysolina hyperici and Agrilus hyperici have been introduced as biocontrol agents.
Medical uses
Major depressive disorder
St John’s wort is widely known as a herbal treatment for depression. In some countries, such as Germany, it is commonly prescribed for mild to moderate depression, especially in children and adolescents.[7] Specifically, Germany has a governmental organization called Commission E which regularly performs rigorous studies on herbal medicine. It is proposed that the mechanism of action of St. John’s wort is due to the inhibition of reuptake of certain neurotransmitters.[1] The best studied chemical components of the plant are hypericin and pseudohypericin.
An analysis of twenty-nine clinical trials with more than five thousand patients was conducted by Cochrane Collaboration. The review concluded that extracts of St John’s wort were superior to placebo in patients with major depression. St John’s wort had similar efficacy to standard antidepressants. The rate of side-effects was half that of newer SSRIantidepressants and one-fifth that of older tricyclic antidepressants.[8] A report[8] from the Cochrane Review states:
The available evidence suggests that the Hypericum extracts tested in the included trials a) are superior to placebo in patients with major depression; b) are similarly effective as standard antidepressants; and c) have fewer side-effects than standard antidepressants.
However the report also noted that some of the studies they reviewed may have been flawed or biased, as “results from German-language countries are considerably more favourable for Hypericum than trials from other countries”. The authors did not know the reason for this discrepancy.
Other medical uses
St John’s wort is being studied for effectiveness in the treatment of certain somatoform disorders. Results from the initial studies are mixed and still inconclusive; some research has found no effectiveness, other research has found a slight lightening of symptoms. Further study is needed and is being performed.
A major constituent chemical, hyperforin, may be useful for treatment of alcoholism, although dosage, safety and efficacy have not been studied.[9][10] Hyperforin has also displayed antibacterial properties against Gram-positive bacteria, although dosage, safety and efficacy has not been studied.[11] Herbal medicine has also employed lipophilic extracts from St John’s wort as a topical remedy for wounds, abrasions, burns, and muscle pain.[10] The positive effects that have been observed are generally attributed to hyperforin due to its possible antibacterial and anti-inflammatory effects.[10] For this reason hyperforin may be useful in the treatment of infected wounds and inflammatory skin diseases.[10] In response to hyperforin’s incorporation into a new bath oil, a study to assess potential skin irritation was conducted which found good skin tolerance of St John’s wort.[10]
A randomized controlled trial of St John’s wort found no significant difference between it and placebo in the management of ADHD symptoms over eight weeks. However, the St John’s wort extract used in the study, originally confirmed to contain 0.3% hypericin, was allowed to degrade to levels of 0.13% hypericin and 0.14% hyperforin. Given that the level of hyperforin was not ascertained at the beginning of the study, and levels of both hyperforin and hypericin were well below that used in other studies, little can be determined based on this study alone.[12] Hypericin and pseudohypericin have shown both antiviral and antibacterial activities. It is believed that these molecules bind non-specifically to viral and cellular membranes and can result in photo-oxidation of the pathogens to kill them.[1]
A research team from the Universidad Complutense de Madrid (UCM) published a study entitled “Hypericum perforatum. Possible option against Parkinson’s disease”, which suggests that St John’s wort has antioxidant active ingredients that could help reduce the neuronal degeneration caused by the disease.[13][14][15][16]
Recent evidence suggests that daily treatment with St John’s wort may improve the most common physical and behavioural symptoms associated with premenstrual syndrome.[17]
St John’s wort was found to be less effective than placebo, in a randomized, double-blind, placebo-controlled trial, for the treatment of irritable bowel syndrome.[18]
St John’s wort alleviated age-related long-term memory impairment in rats.[19]
Adverse effects and drug interactions
St John’s wort is generally well tolerated, with an adverse effect profile similar to placebo.[20] The most common adverse effects reported are gastrointestinal symptoms, dizziness, confusion, tiredness and sedation.[21][22] It also decreases the levels of estrogens, such as estradiol, by speeding up its metabolism, and should not be taken by women oncontraceptive pills as it upregulates the CYP3A4 cytochrome of the P450 system in the liver.[23]
St John’s wort may rarely cause photosensitivity. This can lead to visual sensitivity to light and to sunburns in situations that would not normally cause them.[20] Related to this, recent studies concluded that the extract reacts with light, both visible and ultraviolet, to produce free radicals, molecules that can damage the cells of the body. These can react with vital proteins in the eye that, if damaged, precipitate out, causing cataracts.[24] Another study found that in low concentrations, St. John’s wort inhibits free radical production in both cell-free and human vascular tissue, revealing antioxidant properties of the compound. The same study found pro-oxidant activity at the highest concentration tested.[25]
St John’s wort is associated with aggravating psychosis in people who have schizophrenia.[26]
Consumption of St. John’s wort is discouraged for those with bipolar disorder. There is concern that people with major depression taking St. John’s wort may be at a higher risk for mania.[27]
While St. John’s wort shows some promise in treating children, it is advised that it is only done with medical supervision. [27]
Pharmacokinetic interactions
St John’s wort has been shown to cause multiple drug interactions through induction of the cytochrome P450 enzymes CYP3A4 and CYP2C9, and CYP1A2 (females only). This drug-metabolizing enzyme induction results in the increased metabolism of certain drugs, leading to decreased plasma concentration and potential clinical effect.[28] The principal constituents thought to be responsible are hyperforin and amentoflavone.
St John’s wort has also been shown to cause drug interactions through the induction of the P-glycoprotein (P-gp) efflux transporter. Increased P-gp expression results in decreased absorption and increased clearance of certain drugs, leading to lower plasma concentration and potential clinical efficacy.[29]
Class | Drugs |
---|---|
Antiretrovirals | Non-nucleoside reverse transcriptase inhibitors, protease inhibitors |
Benzodiazepines | Alprazolam, midazolam |
Hormonal contraception | Combined oral contraceptives |
Immunosuppressants | Calcineurin inhibitors, cyclosporine, tacrolimus |
Antiarrhythmics | Amiodarone, flecainide, mexiletine |
Beta-blockers | Metoprolol, carvedilol |
Calcium channel blockers | Verapamil, diltiazem, amlodipine |
Statins (cholesterol-reducing medications) | Lovastatin, simvastatin, atorvastatin |
Others | Digoxin, methadone, omeprazole, phenobarbital, theophylline, warfarin, levodopa, buprenorphine, irinotecan |
Reference: Rossi, 2005; Micromedex |
For a complete list, see CYP3A4 ligands and CYP2C9 ligands. For further updating on interactions and appropriate management, see Herbological.com – St John’s Wort Interactions table (outdated since 2005).
Pharmacodynamic interactions
In combination with other drugs that may elevate 5-HT (serotonin) levels in the central nervous system (CNS), St John’s wort may contribute to serotonin syndrome, a potentially life-threatening adverse drug reaction.[30]
Class | Drugs |
---|---|
Antidepressants | MAOIs, TCAs, SSRIs, SNRIs, mirtazapine |
Opioids | Tramadol, meperidine (pethidine), Levorphanol |
CNS stimulants | Phentermine, diethylpropion, amphetamines, sibutramine, cocaine |
5-HT1 agonists | Triptans |
Psychedelic drugs | Methylenedioxymethamphetamine (MDMA), lysergic acid diethylamide (LSD), psilocybin / psilocin, Mescaline and virtually every serotonergic psychedelic. |
Others | Selegiline, tryptophan, buspirone, lithium, linezolid, 5-HTP, dextromethorphan |
Reference:[30] |
Detection in body fluids
Hypericin, pseudohypericin, and hyperforin may be quantitated in plasma as confirmation of usage and to estimate the dosage. These three active substituents have plasma elimination half-lives within a range of 15–60 hours in humans. None of the three has been detected in urine specimens.[31]
Chemical constituents
The plant contains the following:[32][33]
- Flavonoids (e.g. epigallocatechin, rutin, hyperoside, isoquercetin, quercitrin, quercetin, amentoflavone, biapigenin, astilbin, myricetin, miquelianin, kaempferol, luteolin)
- Phenolic acids (e.g. chlorogenic acid, caffeic acid, p-coumaric acid, ferulic acid, p-hydroxybenzoic acid, vanillic acid)
- Naphthodianthrones (e.g. hypericin, pseudohypericin, protohypericin, protopseudohypericin)
- Phloroglucinols (e.g. hyperforin, adhyperforin)
- Tannins (unspecified, proanthocyanidins reported)
- Volatile oils (e.g. 2-methyloctane, nonane, 2-methyldecane, undecane, α-pinene, β-pinene, α-terpineol, geraniol, myrcene, limonene, caryophyllene, humulene)
- Saturated fatty acids (e.g. isovaleric acid (3-methylbutanoic acid), myristic acid, palmitic acid, stearic acid)
- Alkanols (e.g. 1-tetracosanol, 1-hexacosanol)
- Vitamins & their analogues (e.g. carotenoids, choline, nicotinamide, nicotinic acid)
- Miscellaneous others (e.g. pectin, β-sitosterol, hexadecane, triacontane, kielcorin, norathyriol)
The naphthodianthrones hypericin and pseudohypericin along with the phloroglucinol derivative hyperforin are thought to be among the numerous active constituents.[1][34][35][36]It also contains essential oils composed mainly of sesquiterpenes.[1]
[show]Selected chemical constituents of Hypericum perforatum |
---|
Mechanism of action
St. John’s wort (SJW), similarly to other herbal products, contains a whole host of different chemical constituents that may be pertinent to its therapeutic effects.[32] Hyperforin andadhyperforin, two phloroglucinol constituents of SJW, is a TRPC6 receptor agonist and, consequently, it induces noncompetitive reuptake inhibitor of monoamines (specifically,dopamine, norepinephrine, and serotonin), GABA, and glutamate when it activates this receptor.[2][37][38] It inhibits reuptake of these neurotransmitters by increasing intracellularsodium ion concentrations.[2] Moreover, SJW is known to downregulate the β1 adrenoceptor and upregulate postsynaptic 5-HT1A and 5-HT2A receptors, both of which are a type of serotonin receptor.[2] Other compounds may also play a role in SJW’s antidepressant effects such compounds include: oligomeric procyanidines, flavonoids (quercetin),hypericin, and pseudohypericin.[2][39][40][41]
In humans, the active ingredient hyperforin is a monoamine reuptake inhibitor which also acts as an inhibitor of PTGS1, Arachidonate 5-lipoxygenase, SLCO1B1 and an inducer ofcMOAT. Hyperforin is also a powerful anti-inflammatory compound with anti-angiogenic, antibiotic, and neurotrophic properties.[37][38][42][43] Hyperforin also has an antagonistic effect on NMDA receptors, a type of glutamate receptor.[42] According to one study, hyperforin content correlates with therapeutic effect in mild to moderate depression.[44]Moreover, a hyperforin-free extract of St John’s wort (Remotiv) may still have significant antidepressive effects.[45][46] The limited existing literature on adhyperforin suggests that, like hyperforin, it is a reuptake inhibitor of monoamines, GABA, and glutamate.[47]
Livestock
Poisoning
In large doses, St John’s wort is poisonous to grazing livestock (cattle, sheep, goats, horses).[6] Behavioural signs of poisoning are general restlessness and skin irritation. Restlessness is often indicated by pawing of the ground, headshaking, head rubbing, and occasional hindlimb weakness with knuckling over, panting, confusion, and depression. Mania and hyperactivity may also result, including running in circles until exhausted. Observations of thick wort infestations by Australian graziers include the appearance of circular patches giving hillsides a ‘crop circle’ appearance, it is presumed, from this phenomenon. Animals typically seek shade and have reduced appetite. Hypersensitivity to water has been noted, and convulsions may occur following a knock to the head. Although general aversion to water is noted, some may seek water for relief.
Severe skin irritation is physically apparent, with reddening of non-pigmented and unprotected areas. This subsequently leads to itch and rubbing, followed by further inflammation, exudation, and scab formation. Lesions and inflammation that occur are said to resemble the conditions seen in foot and mouth disease. Sheep have been observed to have face swelling, dermatitis, and wool falling off due to rubbing. Lactating animals may cease or have reduced milk production; pregnant animals may abort. Lesions onudders are often apparent. Horses may show signs of anorexia, depression (with a comatose state), dilated pupils, and injected conjunctiva.
Diagnosis[edit]
Increased respiration and heart rate is typically observed while one of the early signs of St John’s wort poisoning is an abnormal increase in body temperature. Affected animals will lose weight, or fail to gain weight; young animals are more affected than old animals. In severe cases death may occur, as a direct result of starvation, or because of secondary disease or septicaemia of lesions. Some affected animals may accidentally drown. Poor performance of suckling lambs (pigmented and non-pigmented) has been noted, suggesting a reduction in the milk production, or the transmission of a toxin in the milk.
Photosensitisation[edit]
Most clinical signs in animals are caused by photosensitisation.[96] Plants may induce either primary or secondary photosensitisation:
- primary photosensitisation directly from chemicals contained in ingested plants
- secondary photosensitisation from plant-associated damage to the liver.
Araya and Ford (1981) explored changes in liver function and concluded there was no evidence of Hypericum-related effect on the excretory capacity of the liver, or any interference was minimal and temporary. However, evidence of liver damage in blood plasma has been found at high and long rates of dosage.
Photosensitisation causes skin inflammation by a mechanism involving a pigment or photodynamic compound, which when activated by a certain wavelength of light leads tooxidation reactions in vivo. This leads to lesions of tissue, particularly noticeable on and around parts of skin exposed to light. Lightly covered or poorly pigmented areas are most conspicuous. Removal of affected animals from sunlight results in reduced symptoms of poisoning.
See also[edit]
References[edit]
- ^ Jump up to:a b c d e f g h i Mehta, Sweety (2012-12-18). “Pharmacognosy of St. John’s Wort”. Pharmaxchange.info. Retrieved 2014-02-16.
- ^ Jump up to:a b c d e Nathan, PJ (March 2001). “Hypericum perforatum (St John’s Wort): a non-selective reuptake inhibitor? A review of the recent advances in its pharmacology”.Journal of psychopharmacology (Oxford, England) 15 (1): 47–54.doi:10.1177/026988110101500109. PMID 11277608.
- Jump up^ “Hypericum perforatum data sheet at the Royal Horticultural Society“. Retrieved 2011-03-24.
- Jump up^ “#914: Hypericum frondosum – Floridata.com”. Retrieved 2008-11-02.
- ^ Jump up to:a b “SPECIES: Hypericum perforatum”. Fire Effects Information System.
- ^ Jump up to:a b St John’s wort
- Jump up^ Fegert, JM; Kölch, M; Zito, JM; Glaeske, G; Janhsen, K (February–April 2006). “Antidepressant use in children and adolescents in Germany”. Journal of Child and Adolescent Psychopharmacology 16 (1–2): 197–206. doi:10.1089/cap.2006.16.197.PMID 16553540.
- ^ Jump up to:a b Linde, K; Berner, MM; Kriston, L (2008). “St John’s wort for major depression”. In Linde, Klaus. Cochrane Database of Systematic Reviews (4): CD000448.doi:10.1002/14651858.CD000448.pub3. PMID 18843608.
- Jump up^ Kumar, V; Mdzinarishvili, A; Kiewert, C; Abbruscato, T; Bickel, U; van der Schyf, CJ; Klein, J (September 2006). “NMDA receptor-antagonistic properties of hyperforin, a constituent of St. John’s Wort” (PDF). Journal of Pharmacological Sciences 102 (1): 47–54. doi:10.1254/jphs.FP0060378. PMID 16936454.
- ^ Jump up to:a b c d e Reutera, J; Huykea, C; Scheuvensa, H; Plochc, M; Neumannd, K; Jakobb, T; Schemppa, CM (2008). “Skin tolerance of a new bath oil containing St. John’s wort extract”. Skin pharmacology and physiology 21 (6): 306–311. doi:10.1159/000148223.PMID 18667843.
- Jump up^ Cecchini, C; Cresci, A; Coman, MM; Ricciutelli, M; Sagratini, G; Vittori, S; Lucarini, D; Maggi, F (June 2007). “Antimicrobial activity of seven hypericum entities from central Italy”. Planta Medica 73 (6): 564–6. doi:10.1055/s-2007-967198. PMID 17516331.
- Jump up^ Weber, W; Vander Stoep, A; McCarty, RL; Weiss, NS; Biederman, J; McClellan, J (June 2008). “A Randomized Placebo Controlled Trial Of Hypericum perforatum For Attention Deficit Hyperactivity Disorder In Children And Adolescents”. JAMA 299 (22): 2633–41. doi:10.1001/jama.299.22.2633. PMC 2587403. PMID 18544723.
- Jump up^ “Medicinal Plant, St John’s Wort, May Reduce Neuronal Degeneration Caused By Parkinson’s Disease”. ScienceDaily. Retrieved 2014-02-16.
- Jump up^ “www.diariocritico.com/general/147916″. Diariocritico.com. Retrieved 2014-02-16.
- Jump up^ [1][dead link]
- Jump up^ “www.madrimasd.org/noticias/-i-Hypericum-perforatum-i-y-Parkinson/38181″. Madrimasd.org. 2009-02-16. Retrieved 2014-02-16.
- Jump up^ Canning, S; Waterman, M; Orsi, N; Ayres, J; Simpson, N; Dye, L (March 2010). “The efficacy of Hypericum perforatum (St John’s wort) for the treatment of premenstrual syndrome: a randomized, double-blind, placebo-controlled trial”. CNS Drugs 24 (3): 207–25. doi:10.2165/11530120-000000000-00000. PMID 20155996.
- Jump up^ Saito, YA; Rey, E; Almazar-Elder, AE; Harmsen, WS; Zinsmeister, AR; Locke, GR; Talley, NJ (January 2010). “A randomized, double-blind, placebo-controlled trial of St John’s wort for treating irritable bowel syndrome”. Am. J. Gastroenterol. 105 (1): 170–7.doi:10.1038/ajg.2009.577. PMID 19809408.
- Jump up^ Trofimiuk, E; Braszko, JJ (August 2010). “Hypericum perforatum alleviates age-related forgetting in rats”. Current Topics in Nutraceutical Research 8 (2-3): 103–107.
- ^ Jump up to:a b Ernst, E; Rand, JI; Barnes, J; Stevinson, C (1998). “Adverse effects profile of the herbal antidepressant St. John’s wort (Hypericum perforatum L.)”. European Journal of Clinical Pharmacology 54 (8): 589–94. doi:10.1007/s002280050519. PMID 9860144.
- Jump up^ Barnes, J; Anderson, LA; Phillipson, JD (2002). Herbal Medicines: A guide for healthcare professionals (2nd ed.). London, UK: Pharmaceutical Press.ISBN 9780853692898.
- Jump up^ Parker, V; Wong, AH; Boon, HS; Seeman, MV (February 2001). “Adverse reactions to St John’s Wort”. Canadian Journal of Psychiatry 46 (1): 77–9. PMID 11221494.
- Jump up^ Barr Laboratories, Inc. (March 2008). “ESTRACE TABLETS, (estradiol tablets, USP)” (PDF). wcrx.com. Retrieved 27 January 2010.
- Jump up^ Schey, KL; Patat, S; Chignell, CF; Datillo, M; Wang, RH; Roberts, JE (August 2000). “Photooxidation of lens alpha-crystallin by hypericin (active ingredient in St. John’s Wort)”. Photochemistry and Photobiology 72 (2): 200–3. doi:10.1562/0031-8655(2000)0720200POLCBH2.0.CO2. PMID 10946573.
- Jump up^ Hunt, EJ; Lester, CE; Lester, EA; Tackett, RL (June 2001). “Effect of St. John’s wort on free radical production”. Life Sci. 69 (2): 181–90. doi:10.1016/S0024-3205(01)01102-X. PMID 11441908.
- Jump up^ Singh, Simon and Edzard Ernst (2008). Trick or Treatment: The Undeniable Facts About Alternative Medicine. W. W. Norton & Company. p. 218. ISBN 978-0-393-33778-5.
- ^ Jump up to:a b “St. John’s wort – University of Maryland Medical Center”. University of Maryland Medical Center. umm.edu. June 24, 2013. Retrieved January 3, 2014.
- Jump up^ Wenk, M; Todesco, L; Krähenbühl, S (April 2004). “Effect of St John’s wort on the activities of CYP1A2, CYP3A4, CYP2D6, N-acetyltransferase 2, and xanthine oxidase in healthy males and females” (PDF). British Journal of Clinical Pharmacology 57 (4): 495–499. doi:10.1111/j.1365-2125.2003.02049.x. PMC 1884478. PMID 15025748.
- Jump up^ Gurley, BJ; Swain, A; Williams, DK; Barone, G; Battu, SK (July 2008). “Gauging the clinical significance of P-glycoprotein-mediated herb-drug interactions: Comparative effects of St. John’s wort, echinacea, clarithromycin, and rifampin on digoxin pharmacokinetics”. Mol Nutr Food Res 52 (7): 772–9. doi:10.1002/mnfr.200700081.PMC 2562898. PMID 18214850.
- ^ Jump up to:a b Rossi, S, ed. (2013). Australian Medicines Handbook (2013 ed.). Adelaide: The Australian Medicines Handbook Unit Trust. ISBN 978-0-9805790-9-3.
- Jump up^ R. Baselt, Disposition of Toxic Drugs and Chemicals in Man, 8th edition, Biomedical Publications, Foster City, CA, 2008, pp. 1445–1446.
- ^ Jump up to:a b c d Barnes, J; Anderson, LA; Phillipson, JD (2007) [1996]. Herbal Medicines(PDF) (3rd ed.). London, UK: Pharmaceutical Press. ISBN 978-0-85369-623-0.
- ^ Jump up to:a b Greeson, JM; Sanford, B; Monti, DA. “St. John’s wort (Hypericum perforatum): a review of the current pharmacological, toxicological, and clinical literature” (PDF).Psychopharmacology (Berl) 153 (4): 402–414date=February 2001.doi:10.1007/s002130000625. PMID 11243487.
- Jump up^ Umek, A; Kreft, S; Kartnig, T; Heydel, B (1999). “Quantitative phytochemical analyses of six hypericum species growing in slovenia”. Planta medica 65 (4): 388–90.doi:10.1055/s-2006-960798. PMID 17260265.
- Jump up^ Tatsis, EC; Boeren, S; Exarchou, V; Troganis, AN; Vervoort, J; Gerothanassis, IP (2007). “Identification of the major constituents of Hypericum perforatum by LC/SPE/NMR and/or LC/MS”. Phytochemistry 68 (3): 383–93. doi:10.1016/j.phytochem.2006.11.026.PMID 17196625.
- Jump up^ Schwob I, Bessière JM, Viano J.Composition of the essential oils of Hypericum perforatum L. from southeastern France.C R Biol. 2002;325:781-5.
- ^ Jump up to:a b Pharmacology. “Hyperforin”. Drugbank. University of Alberta. Retrieved 5 December 2013.
- ^ Jump up to:a b Biomedical Effects and Toxicity. “Hyperforin”. Pubchem Compound. National Center for Biotechnology Information. Retrieved 5 December 2013.
- Jump up^ Nahrstedt, A; Butterweck, V (September 1997). “Biologically active and other chemical constituents of the herb of Hypericum perforatum L”. Pharmacopsychiatry 30 (Suppl 2): 129–34. doi:10.1055/s-2007-979533. PMID 9342774.
- Jump up^ Butterweck, V (2003). “Mechanism of action of St John’s wort in depression : what is known?”. CNS Drugs 17 (8): 539–62. doi:10.2165/00023210-200317080-00001.PMID 12775192.
- Jump up^ Müller, WE (February 2003). “Current St John’s wort research from mode of action to clinical efficacy”. Pharmacology Research 47 (2): 101–9. doi:10.1016/S1043-6618(02)00266-9. PMID 12543057.
- ^ Jump up to:a b Pharmacology and Biomolecular Interactions and Pathways. “Hyperforin”.PubChem Compound. National Center for Biotechnology Information. Retrieved 3 December 2013.
- Jump up^ Targets. “Hyperforin”. DrugBank. University of Alberta. Retrieved 4 December 2013.
- Jump up^ USA (2014-01-24). “St. John’s wort in mild to moderate depre… [Pharmacopsychiatry. 1998] – PubMed – NCBI”. Ncbi.nlm.nih.gov. Retrieved 2014-02-16.
- Jump up^ Woelk, H (September 2000). “Comparison of St John’s wort and imipramine for treating depression: randomised controlled trial”. BMJ 321 (7260): 536–9.doi:10.1136/bmj.321.7260.536. PMC 27467. PMID 10968813.
- Jump up^ Schrader, E (March 2000). “Equivalence of St John’s wort extract (Ze 117) and fluoxetine: a randomized, controlled study in mild-moderate depression”. Int Clin Psychopharmacol 15 (2): 61–8. doi:10.1097/00004850-200015020-00001.PMID 10759336.
- Jump up^ Jensen, AG; Hansen, SH; Nielsen, EO (Feb 23, 2001). “Adhyperforin as a contributor to the effect of Hypericum perforatum L. in biochemical models of antidepressant activity.”. Life Sciences 68 (14): 1593–605. doi:10.1016/S0024-3205(01)00946-8.PMID 11263672.
- Jump up^ “St. John’s wort”. Natural Standard. Cambridge, MA. Retrieved 13 December 2013.
- ^ Jump up to:a b c d e f Anzenbacher, Pavel; Zanger, Ulrich M., eds. (2012). Metabolism of Drugs and Other Xenobiotics. Weinheim, Germany: Wiley-VCH.doi:10.1002/9783527630905. ISBN 978-3-527-63090-5.
- Jump up^ Jensen, AG; Hansen, SH; Nielsen, EO (February 2001). “Adhyperforin as a contributor to the effect of Hypericum perforatum L. in biochemical models of antidepressant activity.”. Life Sciences 68 (14): 1593–1605. doi:10.1016/S0024-3205(01)00946-8.PMID 11263672.
- ^ Jump up to:a b Krusekopf, S; Roots, I (November 2005). “St. John’s wort and its constituent hyperforin concordantly regulate expression of genes encoding enzymes involved in basic cellular pathways”. Pharmacogenetics and Genomics 15 (11): 817–829.doi:10.1097/01.fpc.0000175597.60066.3d. PMID 16220113.
- ^ Jump up to:a b c Obach, RS (July 2000). “Inhibition of human cytochrome P450 enzymes by constituents of St. John’s Wort, an herbal preparation used in the treatment of depression” (PDF). Journal of Pharmacology and Experimental Therapeutics 294 (1): 88–95. PMID 10871299.
- ^ Jump up to:a b c d Kubin, A; Wierrani, F; Burner, U; Alth, G; Grünberger, W (2005). “Hypericin – The Facts About a Controversial Agent” (PDF). Current Pharmaceutical Design 11 (2): 233–253. doi:10.2174/1381612053382287. PMID 15638760.
- Jump up^ Peebles, KA; Baker, RK; Kurz, EU; Schneider, BJ; Kroll, DJ. “Catalytic inhibition of human DNA topoisomerase IIalpha by hypericin, a naphthodianthrone from St. John’s wort (Hypericum perforatum)”. Biochemical Pharmacology 62 (8): 1059–1070.doi:10.1016/S0006-2952(01)00759-6. PMID 11597574.
- Jump up^ Kerb, R; Brockmöller, J; Staffeldt, B; Ploch, M; Roots, I (September 1996). “Single-dose and steady-state pharmacokinetics of hypericin and pseudohypericin” (PDF).Antimicrobial Agents and Chemotherapy 40 (9): 2087–2093. PMC 163478.PMID 8878586.
- Jump up^ Meruelo, D; Lavie, G; Lavie, D (July 1988). “Therapeutic agents with dramatic antiretroviral activity and little toxicity at effective doses: Aromatic polycyclic diones hypericin and pseudohypericin” (PDF). Proceedings of the National Academy of Sciences 85 (14): 5230–5234. doi:10.1073/pnas.85.14.5230. PMC 281723.PMID 2839837.
- Jump up^ Lavie, G; Valentine, F; Levin, B; Mazur, Y; Gallo, G; Lavie, D; Weiner, D; Meruelo, D (August 1989). “Studies of the mechanisms of action of the antiretroviral agents hypericin and pseudohypericin” (PDF). Proceedings of the National Academy of Sciences 86(15): 5963–5967. doi:10.1073/pnas.86.15.5963. PMC 297751. PMID 2548193.
- Jump up^ Takahashi, I; Nakanishi, S; Kobayashi, E; Nakano, H; Suzuki, K; Tamaoki, T. “Hypericin and pseudohypericin specifically inhibit protein kinase C: Possible relation to their antiretroviral activity”. Biochemical and Biophysical Research Communications 165(3): December 1989. doi:10.1016/0006-291X(89)92730-7. PMID 2558652.
- Jump up^ von Moltke, LL; Weemhoff, JL; Bedir, E; Khan, IA; Harmatz, JS; Goldman, P; Greenblatt, DJ (August 2004). “Inhibition of human cytochromes P450 by components of Ginkgo biloba”. The Journal of Pharmacy and Pharmacology 56 (8): 1039–1044.doi:10.1211/0022357044021. PMID 15285849.
- Jump up^ Lee, JS; Lee, MS; Oh, WK; Sul, JY (August 2009). “Fatty acid synthase inhibition by amentoflavone induces apoptosis and antiproliferation in human breast cancer cells”(PDF). Biological & Pharmaceutical Bulletin 32 (8): 1427–1432.doi:10.1248/bpb.32.1427. PMID 19652385.
- Jump up^ Wilsky, S; Sobotta, K; Wiesener, N; Pilas, J; Althof, N; Munder, T; Wutzler, P; Henke, A (February 2012). “Inhibition of fatty acid synthase by amentoflavone reduces coxsackievirus B3 replication”. Archives of Virology 157 (2): 259–269.doi:10.1007/s00705-011-1164-z. PMID 22075919.
- Jump up^ Lee, JS; Sul, JY; Park, JB; Lee, MS; Cha, EY; Song, IS; Kim, JR; Chang, ES (May 2013). “Fatty Acid Synthase Inhibition by Amentoflavone Suppresses HER2/neu(erbB2) Oncogene in SKBR3 Human Breast Cancer Cells”. Phytotherapy Research 27 (5): 713–720. doi:10.1002/ptr.4778. PMID 22767439.
- Jump up^ Katavic, PL; Lamb, K; Navarro, H; Prisinzano, TE (August 2007). “Flavonoids as opioid receptor ligands: identification and preliminary structure-activity relationships”. J Nat Prod. 70 (8): 1278–82. doi:10.1021/np070194x. PMC 2265593. PMID 17685652.
- Jump up^ Hanrahan, JR; Chebib, M; Davucheron, NL; Hall, BJ; Johnston, GA (2003). “Semisynthetic preparation of amentoflavone: A negative modulator at GABA(A) receptors”. Bioorganic & Medicinal Chemistry Letters 13 (14): 2281–4.doi:10.1016/s0960-894x(03)00434-7. PMID 12824018.
- Jump up^ Viola, H; Wasowski, C; Levi de Stein, M; Wolfman, C; Silveira, R; Dajas, F; Medina, JH; Paladini, AC (June 1995). “Apigenin, a component of Matricaria recutita flowers, is a central benzodiazepine receptors-ligand with anxiolytic effects”. Planta Medica 61 (3): 213–216. doi:10.1055/s-2006-958058. PMID 7617761.
- Jump up^ Bao, YY; Zhou, SH; Fan, J; Wang, QY (September 2013). “Anticancer mechanism of apigenin and the implications of GLUT-1 expression in head and neck cancers”. Future Oncology 9 (9): 1353–1364. doi:10.2217/fon.13.84. PMID 23980682.
- Jump up^ Shukla, S; Gupta, S. “Apigenin: A promising molecule for cancer prevention”.Pharmaceutical Research 27 (6): 962–968. doi:10.1002/mnfr.201200424.PMID 23197449.
- Jump up^ Crespy, V; Williamson, G. “A Review of the Health Effects of Green Tea Catechins in In Vivo Animal Models” (PDF). The Journal of Nutrition 134 (12): 3431S–3440S.
- Jump up^ Chacko, SM; Thambi, PT; Kuttan, R; Nishigaki, I (April 2010). “Beneficial effects of green tea: A literature review” (PDF). Chinese Medicine 5 (1): 1–9. doi:10.1186/1749-8546-5-13. PMC 2855614. PMID 20370896.
- ^ Jump up to:a b Korte, G; Dreiseitel, A; Schreier, P; Oehme, A; Locher, S; Geiger, S; Heilmann, J; Sand, PG (January 2010). “Tea catechins’ affinity for human cannabinoid receptors”.Phytomedicine 17 (1): 19–22. doi:10.1016/j.phymed.2009.10.001. PMID 19897346.
- Jump up^ Song, M; Hong, M; Lee, MY; Jee, JG; Lee, YM; Bae, JS; Jeong, TC; Lee, S (September 2013). “Selective inhibition of the cytochrome P450 isoform by hyperoside and its potent inhibition of CYP2D6″. Food and Chemical Toxicology 59: 549–553.doi:10.1016/j.fct.2013.06.055. PMID 23835282.
- Jump up^ Li, S; Zhang, Z; Cain, A; Wang, B; Long, M; Taylor, J (January 2005). “Antifungal Activity of Camptothecin, Trifolin, and Hyperoside Isolated from Camptotheca acuminata”.Journal of Agricultural and Food Chemistry 53 (1): 32–37. doi:10.1021/jf0484780.PMID 15631505.
- Jump up^ Zeng, KW; Wang, XM; Ko, H; Kwon, HC; Cha, JW; Yang, HO (December 2011). “Hyperoside protects primary rat cortical neurons from neurotoxicity induced by amyloid β-protein via the PI3K/Akt/Bad/Bcl(XL)-regulated mitochondrial apoptotic pathway”.European Journal of Pharmacology 672 (1-3): 45–55. doi:10.1016/j.ejphar.2011.09.177.PMID 21978835.
- Jump up^ Kim, SJ; Um, JY; Lee, JY (January 2011). “Anti-Inflammatory Activity of Hyperoside Through the Suppression of Nuclear Factor-κB Activation in Mouse Peritoneal Macrophages”. The American Journal of Chinese Medicine 39 (1): 171–181.doi:10.1142/S0192415X11008737. PMID 21213407.
- Jump up^ Haas, JS; Stolz, ED; Betti, AH; Stein, AC; Schripsema, J; Poser, GL; Rates, SM (March 2011). “The Anti-Immobility Effect of Hyperoside on the Forced Swimming Test in Rats is Mediated by the D2-Like Receptors Activation” (PDF). Planta Medica 77 (4): 334–339. doi:10.1055/s-0030-1250386. PMID 20945276.
- Jump up^ Zheng, M; Liu, C; Pan, F; Shi, D; Zhang, Y (January 2012). “Antidepressant-like effect of hyperoside isolated from Apocynum venetum leaves: Possible cellular mechanisms”.Phytomedicine 19 (2): 145–149. doi:10.1016/j.phymed.2011.06.029.PMID 21802268.
- Jump up^ Pal, D; Mitra, AK (March 2006). “MDR- and CYP3A4-mediated drug-herbal interactions”. Life Sciences 78 (18): 2131–2145. doi:10.1016/j.lfs.2005.12.010.PMID 16442130.
- Jump up^ Hämäläinen, M; Nieminen, R; Vuorela, P; Heinonen, M; Moilanen, E (August 2007).“Anti-Inflammatory Effects of Flavonoids: Genistein, Kaempferol, Quercetin, and Daidzein Inhibit STAT-1 and NF-κB Activations, Whereas Flavone, Isorhamnetin, Naringenin, and Pelargonidin Inhibit only NF-κB Activation along with Their Inhibitory Effect on iNOS Expression and NO Production in Activated Macrophages” (PDF). Mediators of Inflammation 2007: 45673. doi:10.1155/2007/45673. PMC 2220047.PMID 18274639.
- Jump up^ Berger, A; Venturelli, S; Kallnischkies, M; Böcker, A; Busch, C; Weiland, T; Noor, S; Leischner, C; Weiss, TS; Lauer, UM; Bischoff, SC; Bitzer, M (June 2013). “Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases”. The Journal of Nutritional Biochemistry 24 (6): 977–985. doi:10.1016/j.jnutbio.2012.07.001.PMID 23159065.
- ^ Jump up to:a b Calderón-Montaño, JM; Burgos-Morón, E; Pérez-Guerrero, C; López-Lázaro, M (April 2011). “A Review on the Dietary Flavonoid Kaempferol”. Mini-Reviews in Medicinal Chemistry 11 (4): 298–344. doi:10.2174/138955711795305335. PMID 21428901.
- Jump up^ Seelinger, G; Merfort, I; Schempp, CM (November 2008). “Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin”. Planta Medica 74 (14): 1667–1677.doi:10.1055/s-0028-1088314. PMID 18937165.
- Jump up^ Lin, Y; Shi, R; Wang, X; Shen, HM. “Luteolin, a flavonoid with potential for cancer prevention and therapy” (PDF). Current Cancer Drug Targets 8 (7): 634–646.doi:10.2174/156800908786241050. PMC 2615542. PMID 18991571.
- Jump up^ Theoharides, TC; Asadi, S; Panagiotidou, S (April–June 2012). “A case series of a luteolin formulation (neuroprotek®) in children with autism spectrum disorders”.International Journal of Immunopathology and Pharmacology 25 (2): 317–323.PMID 22697063.
- Jump up^ Yu, MC; Chen, JH; Lai, CY; Han, CY; Ko, WC (February 2010). “Luteolin, a non-selective competitive inhibitor of phosphodiesterases 1-5, displaced [3H]-rolipram from high-affinity rolipram binding sites and reversed xylazine/ketamine-induced anesthesia”.European Journal of Pharmacology 627 (1-3): 269–275.doi:10.1016/j.ejphar.2009.10.031. PMID 19853596.
- Jump up^ Chen, C; Zhou, J; Ji, C (September 2010). “Quercetin: A potential drug to reverse multidrug resistance”. Life Sciences 87 (11-12): 333–338.doi:10.1016/j.lfs.2010.07.004. PMID 20637779.
- ^ Jump up to:a b Kelly, GS (June 2011). “Quercetin” (PDF). Alternative Medicine Review 16 (2): 172–194. ISSN 1089-5159.
- Jump up^ Ko, WC; Shih, CM; Lai, YH; Chen, JH; Huang, HL (November 2004). “Inhibitory effects of flavonoids on phosphodiesterase isozymes from guinea pig and their structure–activity relationships”. Biochemical Pharmacology 68 (10): 2087–2094.doi:10.1016/j.bcp.2004.06.030. PMID 15476679.
- Jump up^ Chua, LS (December 2013). “A review on plant-based rutin extraction methods and its pharmacological activities”. Journal of Ethnopharmacology 150 (3): 805–817.doi:10.1016/j.jep.2013.10.036. PMID 24184193.
- Jump up^ Jaikang, C; Niwatananun, K; Narongchai, P; Narongchai, S; Chaiyasut, C (August 2011). “Inhibitory effect of caffeic acid and its derivatives on human liver cytochrome P450 3A4 activity”. Journal of Medicinal Plants Research 5 (15): 3530–3536.
- Jump up^ Hou, J; Fu, J; Zhang, ZM; Zhu, HL. “Biological activities and chemical modifications of caffeic acid derivatives”. Fudan University Journal of Medical Sciences 38 (6): 546–552.doi:10.3969/j.issn.1672-8467.2011.06.017.
- Jump up^ Zhao, Y; Wang, J; Ballevre, O; Luo, H; Zhang, W (April 2012). “Antihypertensive effects and mechanisms of chlorogenic acids”. Hypertension Research 35 (4): 370–374.doi:10.1038/hr.2011.195. PMID 22072103.
- Jump up^ [2][dead link]
- Jump up^ http://www.acdlabs.com/resources/freeware/chemsketch/ACDChemSketch
- Jump up^ Lee, MJ; Maliakal, P; Chen, L; Meng, X; Bondoc, FY; Prabhu, S; Lambert, G; Mohr, S; Yang, CS (October 2002). “Pharmacokinetics of Tea Catechins after Ingestion of Green Tea and (-)-Epigallocatechin-3-gallate by Humans: Formation of Different Metabolites and Individual Variability” (PDF). Cancer Epidemiology, Biomarkers & Prevention 11 (10 pt 1): 1025–1032. PMID 12376503.
- Jump up^ Walle, T; Walle, UK; Halushka, PV (October 2001). “Carbon Dioxide Is the Major Metabolite of Quercetin in Humans” (PDF). The Journal of Nutrition 131 (10): 2648–2652. PMID 11584085.
- Jump up^ St John’s wort effects on animals
Further reading[edit]
- British Herbal Medicine Association Scientific Committee (1983). British Herbal Pharmacopoeia. West Yorkshire: British Herbal Medicine Association. ISBN 0-903032-07-4.
- Müller, Walter (2005). St. John’s Wort and its Active Principles in Depression and Anxiety. Basel: Birkhäuser. doi:10.1007/b137619. ISBN 978-3-7643-6160-0.
External links
![]() |
Wikispecies has information related to: Hypericum perforatum |
![]() |
Wikimedia Commons has media related to Hypericum perforatum. |
- Barrett S (2000). “St. John’s Wort”. Retrieved 2009-03-08.
- “St. John’s wort: MedlinePlus Supplements”. U.S. National Library of Medicine. Retrieved 7 October 2009.
- Species Profile — St. Johnswort (Hypericum perforatum), National Invasive Species Information Center, United States National Agricultural Library. Lists general information and resources for St John’s wort.
What is it?
St. John’s wort is most commonly used for depression and conditions that sometimes go along with depression such as anxiety, tiredness, loss of appetite and trouble sleeping. There is some strong scientific evidence that it is effective for mild to moderate depression.
Other uses include heart palpitations, moodiness and other symptoms of menopause, attention deficit-hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), and seasonal affective disorder (SAD).
St. John’s wort has been tried for exhaustion, stop-smoking help, fibromyalgia, chronic fatigue syndrome (CFS), migraine and other types of headaches, muscle pain, nerve pain, and irritable bowel syndrome. It is also used for cancer, HIV/AIDS, and hepatitis C.
An oil can be made from St. John’s wort. Some people apply this oil to their skin to treat bruises and scrapes, inflammation and muscle pain, first degree burns, wounds, bug bites, hemorrhoids, and nerve pain. But applying St. John’s wort directly to the skin is risky. It can cause serious sensitivity to sunlight.
St. John’s wort is native to Europe but is commonly found in the US and Canada in the dry ground of roadsides, meadows, and woods. Although not native to Australia and long considered a weed, St. John’s wort is now grown there as a crop. Today, Australia produces 20 percent of the world’s supply.
The use of St. John’s wort dates back to the ancient Greeks. Hippocrates recorded the medical use of St. John’s wort flowers. St. John’s wort was given its name because it blooms about June 24th, the birthday of John the Baptist. “Wort” is an old English word for plant.
France has banned the use of St. John’s wort products. The ban appears to be based on a report issued by the French Health Product Safety Agency warning of significant interactions between St. John’s wort and some medications. Several other countries, including Japan, the United Kingdom, and Canada, are in the process of including drug-herb interaction warnings on St. John’s wort products.
The active ingredients in St. John’s wort can be deactivated by light. That’s why you will find many products packaged in amber containers. The amber helps, but it doesn’t offer total protection against the adverse effects of light.
How effective is it?
The effectiveness ratings for ST. JOHN’S WORT are as follows:
Likely effective for…
- Mild to moderate depression. Taking St. John’s wort extracts improves mood, and decreases anxiety and insomnia related to depression. It seems to be about as effective in treating depression as many prescription drugs. In fact, clinical guidelines from the American College of Physicians-American Society of Internal Medicine suggest that St. John’s wort can be considered an option along with antidepressant medications for short-term treatment of mild depression. However, since St. John’s wort does not appear to be more effective or significantly better tolerated than antidepressant medications, and since St. John’s wort causes many drug interactions, the guidelines suggest it might not be an appropriate choice for many people, particularly those who take other medications. St. John’s wort might not be as effective for more severe cases of depression.
Possibly effective for…
- Menopausal symptoms. Some research shows that a combination of St. John’s wort plus black cohosh can help improve menopausal symptoms.
- The conversion of mental experiences or states into bodily symptoms (somatization disorder). Treatment with St. John’s wort seems to reduce symptoms after 6 weeks of treatment.
- Wound healing. Some research shows that applying a specific St. John’s wort ointment (Gol-Daru Company) three times daily for 16 days improves wound healing and reduces scar formation after a cesarean section.
Possibly ineffective for…
- Attention deficit-hyperactivity disorder (ADHD). Taking a St. John’s wort extract for 8 weeks does not seem to improve symptoms of ADHD in children ages 6-17 years.
- Hepatitis C virus (HCV) infection.
- HIV/AIDS.
- Irritable bowel syndrome (IBS).
- Pain conditions related to diabetes (polyneuropathy.
Insufficient evidence to rate effectiveness for…
- Obsessive compulsive disorder (OCD). There is conflicting evidence about the effectiveness of St. John’s wort for OCD. The reason for contradictory findings could be due to differences in study design, differences in the St. John’s wort products used, or other factors.
- Premenstrual syndrome (PMS). There is preliminary evidence that St. John’s wort might help reduce PMS symptoms, by even as much as 50% in some women.
- Seasonal affective disorder (SAD). Early studies suggest that St. John’s wort might help SAD. It appears to improve symptoms of anxiety, decreased sex drive, and sleep disturbances associated with SAD. It is useful alone or in combination with light therapy.
- Smoking cessation. Research to date suggests that taking a specific St. John’s wort extract (LI-160, Lichtwer Pharma US) 300 mg once or twice daily starting 1 week before and continuing for 3 months after quitting smoking does not improve long-term quit rates.
- Stomach upset.
- Bruises.
- Skin conditions.
- Migraine headache.
- Nerve pain.
- Sciatica.
- Excitability.
- Fibromyalgia.
- Chronic fatigue syndrome (CFS).
- Muscle pain.
- Cancer.
- Weight loss.
- Other conditions.
More evidence is needed to rate St. John’s wort for these uses.
How does it work?
Are there safety concerns?
St. John’s wort seems to be safe when used in children under 12 years of age for up to 6 weeks.
However, St. John’s wort is POSSIBLY UNSAFE when taken by mouth in large doses. It might cause severe reactions to sun exposure. Wear sun block outside, especially if you are light-skinned.
Not enough is known about the safety of St. John’s wort when it is applied to the skin. To be safe, don’t use it topically.
St. John’s wort interacts with many drugs (see the section below). Let your healthcare provider know if you want to take St. John’s wort. Your healthcare provider will want to review your medications to see if there could be any problems.
Special precautions & warnings:
Pregnancy and breast-feeding: St. John’s wort is POSSIBLY UNSAFE when taken during pregnancy. There is some evidence that it can cause birth defects in unborn rats. No one yet knows whether it has the same effect in unborn humans. Nursing infants of mothers who take St. John’s wort can experience colic, drowsiness, and listlessness. Until more is known, don’t use St. John’s wort if you are pregnant or breast-feeding.
Infertility: There are some concerns that St. John’s wort might interfere with conceiving a child. If you are trying to conceive, don’t use St. John’s wort, especially if you have known fertility problems.
Attention deficit-hyperactivity disorder (ADHD): There is some concern that St. John’s wort might worsen symptoms of ADHD, especially in people taking the medication methylphenidate for ADHD. Until more is known, don’t use St. John’s wort if you are taking methylphenidate.
Bipolar disorder: People with bipolar disorder cycle between depression and mania, a state marked by excessive physical activity and impulsive behavior. St. John’s wort can bring on mania in these individuals and can also speed up the cycling between depression and mania.
Major depression: In people with major depression, St. John’s wort might bring on mania, a state marked by excessive physical activity and impulsive behavior.
Schizophrenia: St. John’s wort might bring on psychosis in some people with schizophrenia.
Alzheimer’s disease: There is concern that St. John’s wort might contribute to dementia in people with Alzheimer’s disease.
Anesthesia and surgery: Use of anesthesia in people who have used St. John’s wort for six months may lead to serious heart complications during surgery. Stop using St. John’s wort at least two weeks before a scheduled surgery.
Filed under: AYURVEDA, Uncategorized Tagged: AYURVEDA, Hypericum perforatum, St. John’s Wort
