K.R. Knudsen, J. Holden, S.V. Ley and M. Ladlow, Adv. Syn. Cat. 2007, 349, 535-538.
http://onlinelibrary.wiley.com/doi/10.1002/adsc.200600558/abstract
A versatile, fully automated flow hydrogenator has been developed that is able to perform sequential flow optimisation experiments, flow library hydrogenation, or iterative scale-up hydrogenation. The behaviour of a palladium catalyst in effecting removal of O-benzyl and N-benzyloxycarbonyl protecting groups has been investigated. Significant observations relating to maintaining optimal throughput are reported. A small library of peptidic derivatives has been deprotected in high yield and purity.
System configuration:
The system used was configured from a Gilson liquid handler (233XL), driven with a 10 mL
syringe pump (402). The syringe pump was connected to the sampling needle via a 2-way 6
position switching valve. This single channel liquid handler was used to perform both substrate
manipulation and fraction collection. The liquid handler was connected via a 2-way 6 position
injection valve to a Thales H-CubeTM flow hydrogenator driven with a KnauerTM A120 high
pressure pump. The collection vials were housed in specially designed gas tight blocks (2 x 7)
which were fitted with PTFA seals to enable penetration by the liquid handler needle, and
continuously purged with nitrogen in order to dilute and vent excess hydrogen safely. The
hardware was controlled using a single graphic user interface (HydroMateTM, Figure 2) which
utilised either RS232 or GSIOC connectivity to interface with the Thales and Gilson devices
respectively. Throughout 30 mm, 4 mm id 10% Pd/C catalyst cartridges (CatCartTM) were used
in conjunction with a 5 mL sample injection loop, although larger cartridges are also available.
The control software exploits software ‘wizards’ to assist the user in compiling a sequence of
optimisation experiments, or alternatively permits the implementation of a series of repetitive
experiments for either: (i) catalyst evaluation, (ii) reaction optimisation, (iii) compound library
synthesis, or (iv) as part of an automated, unattended scale up campaign (Figure 1). Experiments
may be devised with variations in scale, temperature, flow rate, and pressure in addition to
periodicity of fraction collection.
Analysis: RP-HPLC was run on a Hewlett Packard 1050 instrument. Column: Supelcosilä
ABZ+
PLUS column, 3.3 cm, 4.6 mm f, 3 mm. Eluent: A: water, 0.1% TFA, B: acetonitrile 95%,
water 5%, TFA 0.05%. Gradient: 10 to 95% B in A (1 mL min-1
) over 8 min. Detection: UV
(diode array detector).
Filed under: organic chemistry Tagged: DEPROTECTION, FLOW SYNTHESIS
